In Search of Disruptive ldeas:
A Survey for Outlier Detection
Techniques in Crowdsourcing
Innovation Platforms



Overview

[research context / application area]

Idea Management Systems = online
collaborative tool to collect ideas from many
people (e.g. clients of a company)
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Overview

[research context / application area]

Idea Management Systems problems

® | ots of contributions
® | ots of duplicates, similar ideas etc.

® | ots of simple or obvious input

e

difficult to choose the best innovations



Overview
[problem - hypothesis - approach]

e problem: pick best candidates for interesting/
disruptive innovations

® hypothesis: good ideas are rare outliers that
stand out from the majority of other proposals

o approach: use outlier detection algorithms on
idea text to detect the most anomalous ideas




what is disruptive innovation / how to

find it ?
[hypothesis theoretical grounding]

i disruptors deliver innovations for overlooked market segments

, while market leaders address their most demanding ,
customers via incremental innovation

[ "What is disruptive innovation?" Christensen, Raynor, Harvard Business Review, 2015]

‘ not all disruptive ideas have to lead to success e standard criteria/ metrics of IMS:

[ "What is disruptive innovation?" Christensen, Raynor, Harvard Business Review, 2015] - favour success as perceived by the entrenched
market leader point of view

- could overlook disruptive ideas that get no
popular support

* metrics bring up ideas of most vocal customers

- less-demanding customers are less vocal and not
equally participatory in IMS, (

)



APP I‘OaChI creating metric for disruptiveness of ideas

[how to find and evaluate the best outlier detection]

. survey available outlier detection algorithms

2. pick the most representative candidates based
on previous applications

3. apply + eval algorithms for idea management
problem using two different public datasets

4. compare results of different algorithms

5. recommend the best approach



Work so far

[related / past work]
ldea Management Systems (key area)

[ "ldem: a prediction market for idea management” Bothos et al.,2008]

different approaches to rating ideas:
stock market imitation

I IVI S + met”cs ‘ [ "Assessing the management of innovation with software tools" S.J. Conn,2009] —> pased on supporting Qnter,orise data
[ "Semantic innovation management across the extended enterprise," K. Ning, 2006] 1 mnovation theory metrics
Wi nn i N g [ "A review of technologies for open innovatlon" Hrastinski et al.,2010] T
I IVI S + | d eas ‘ [ "Steal my idea! Organizational adoption of user innovations" Gangi et al., 2009] > Istudies on selecting ideas based on
[ "An Ontology-based Co-creation Enhancing Systemn for Idea Recommendation’K. egacy metrics
Choi et al., 2015] 4
IMS + dls_,ruptlve ‘ NONE
ideas
IMS + outlier ‘ NONE
detection
(Su barea) TF-IDF + <approach x> (su barea)
. . / Theoretical
First (news) Story Detection/ TDT (98 - 04) del
(no\/elty detection in S’[ream) [ 'news filtering, topic detection and tracking” J. Allen et al.,2004] moaels \A * rich and mature area

new techniques

[ "Unified Analysis of Streaming News” A. Ahmed et al.,2011]

stochastic approach

voice

other media -7 - viceo

new domains

[ "Streaming First Story [...] application to Twitter” S. Petrovic et al.,2010]

narrow down problem
- short text only (e.g.
twitter novelty)

/ - specific domain (e.g.
terrorist threats)

[ "Video scene detection using closed caption text” G. Smith et al.,2009]

[ "Innovation management”

- mostly theoretical

A. Afuah, 1998]

Case stud

- applied approaches
are based on
business studies

ies —

IN enterprises



Survey + alg picks

[different taxonomies / evaluations]

multitude of algorithms across years -

many surveys / taxonomies to classify SoA

CLASSICATION [Chandola, 2008]

CLASSIFICATION [Ji Zhang, 2013] CLASSICATION [Aggarwal, 2013]

1. Statistical (probabilistic) 1. Extreme Value Analysis 1. Classification Based
2. Distance (proximity) based 2. Probabilistic and statistical 2. Clustering Based
3. Density based 3. Linear 3. Nearest Neighbour Based
4. Clustering 4. Proximity based 3.1. KNN
5. High dimensional 4.1. Clustering 3.2. Density

4.2. Density 4. Statistical

4.3. Nearest neighbour 5. Information Theoretic

5. Information Theory based 6. Spectral

6. High dimensional

choose the categories that repeat across surveys
pick one algorithm per each category to evaluate



Evaluated Algorithms

[evaluation outline]

1.Distance Based: kNN (k Nearest Neighbours)
1. Feature vector generation:
1. TF-IDF
2. WORD2VEC
3. LDA / VEM
4. LDA | Gibbs
2. Distance measures:
1. Cosine
2. Manhattan
3. Euclidean
2.Probabilistic / statistical: LDA (Latent Dirichlet Allocation)
3.Density Based: [ OF (Local Outlier Factor)
1.Distance measures: Cosine, Manhattan, Euclidean
4.Clustering: kMeans / kMedoids
1.Distance Measures: Cosine, Manhattan, Euclidean



Evaluation datasets

[two different scenarios]
1.Dell IdeaStorm:

1.lIdeas: new equipment, software for PC manufacturer business
2.Innovators: customers
3.Stats:

15,000 ideas (207 implemented)
2,000 users

2.Starbucks Ideas:

1.ldeas: new drinks, food, changes in oftering for coftee chain
2.Innovators: customers / store owners
3.Stats:

» 10,000 ideas (1069 implemented)
3,000 users




Evaluation - dataset labels

[manual annotation]

Idea title 3 innovation metrics:
manual annotation - Implementation cost 1-10
ﬁ - Potential profit ,
ldea textual desc - Market size Likert
1 overall rating
Breakthrough Scale
I —1
legacy metrics ranking outlier metrics ranking
Vote count - 10 top for every algorithm / configuration
10 top tested
10 middle
10 bottom
Comment count
10 top ,
10 middle ~1000 ideas annotatead
10 bottom

| | per dataset
10 implemented (random pick)

10 unimplemented (random pick)



Evaluation metrics

[assessment of results quality]

correlation with manual eval resuits precision @10 vs. manual ranking
shows if the overall ordering reflects the expected one (ie shows how well the outlier ranking works for the top outliers
1,2,3,4... 5000 etc. if idea count = 5000 , as ranked by (most important ones for organization stand point)

breakthrough rating)

additional extended analysis

|[distance/density] comparison of effectiveness for different neighbourhood settings
[probabilistic] comparison for different topic optimisation settings
[clustering] comparison for different cluster sizes / iterations / feature vectors



Results (ldeaStorm)

[correlation of algorithm rankings vs. manual picks]

manual Breakthough rank <-> outlier rank correlation (the higher the better)
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BEST RESULT

DISTANCE BASED OUTLIER DETECTION | TF-IDF + COSINE = 0.28 -> MEDIUM* correlation with manual scoring

lbaseline = best performing legacy metric ranking

, _ , VS. 0.12 legacy score -> WEAK*correlation with manual scoring
*Cohen correlation scale for social sciences (Cohen,xxxx)



Results (Starbucks)

[correlation of algorithm rankings vs. manual picks]

manual Breakthrough rank <-> outlier rank correlation (the higher the better)
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BEST RESULT

DISTANCE BASED OUTLIER DETECTION | TF-IDF + COSINE = 0.32 -> MEDIUM* correlation with manual scoring

lbaseline = best performing legacy metric ranking

, _ , VS. 0.17 legacy score -> WEAK*correlation with manual scoring
*Cohen correlation scale for social sciences (Cohen,xxxx)



Results (ldeaStorm)

[precision@ |0 for algorithm rankings vs. manual picks]

precision@10 (the higher the better)
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Results (Starbucks)

[precision@ |0 of algorithm rankings vs. manual picks]

precision@10 (the higher the better)
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lbaseline = best performing legacy metric ranking

VS.
*(similar dLDA + COSINE; dLDA + MANHATTAN; K-MEDOIDS + COSINE) 0 legacy score



Results / distance algorithms

[correlation of algorithm rankings vs. manual picks]

correlation

RRS-single - manual rank <-> outlier rank correlation (the lower the better)
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Conclusions

DISTANCE BASED ALGORITHMS
perform best for particular problem discussed

STATISTICAL OUTLIER DETECTION
performs worst and is also hardest to tune

CLUSTERING ALGORITHMS
significance of “k” outweighs any other parameter by big
margin

ALL CASES regardless of approach outlier detection
brings new metric quality to |[dea Management System



